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Abstract

The current push in the topology optimization community is to apply topology optimization to mechanics problems beyond typical
structural design to other physical domains. Here, a framework for topology optimization of nonlinear steady-state heat transfer with
conduction, convection, and radiation without explicitly accounting for fluid motion is evaluated. Convection-dominated diffusion prob-
lems are susceptible to numerical instabilities that, unless they are handled properly in the analysis, can severely affect the optimization.
This numerical instability issue is the focus of this work, its origin is discussed in the context of density-design-variable-based topology
optimization, and a method for avoiding such instabilities is described. Several design examples demonstrate the approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Until recently, topology optimization has been primarily
applied to structural problems. We apply topology optimi-
zation to steady-state heat transfer problems here. The
methodology of structural topology optimization can be
applied to conduction heat transfer problems in a relatively
straightforward manner. For example, Fig. 1a depicts the
design domain of an insulated enclosure that is subject to
volumetric heat generation and a heat sink at the mid-span
of the left domain edge. The goal is optimally place a lim-
ited amount of conductive material within the design
domain so that the maximum temperature is minimized
in a manner analogous to minimum compliance for struc-
tural topology optimization problems. The notion of topol-
ogy is introduced by weighting the conduction matrix by a
design-variable-dependent density measure, i.e. in the same
manner as the stiffness matrix is typically weighted for
structural problems. The optimal distribution of highly
conductive material as depicted in Fig. 1b is reminiscent
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of tree-like structures found in nature. We can imagine that
a micro-cooler for a tightly packed VLSI electronic system
could be based on the distribution of the conduction chan-
nels depicted in Fig. 1b. Because the governing equation,
i.e. Poisson equation, associated with heat transfer defines
other field problems, e.g. electric and magnetic potential,
ideal fluid flow, etc., the same methodology can be applied
to many diverse physical problems.

Extensive work has previously addressed the design sen-
sitivity computation for thermal-based shape optimization
problems, e.g. refer to the comprehensive summary in [1],
so we briefly examine the research literature that accounts
for thermal effects and similar field problems specifically
using topology optimization techniques. A similar formula-
tion of the field problem of Fig. 1 appears in the work by
Borrvall et al. [2], i.e. in the context of porous media flow,
and Bendsøe and Sigmund [3], i.e. in the context of conduc-
tion heat transfer. Rodrigues and Fernandes [4,5] and Jog
[6] investigated thermoelasticity early in the history of
topology optimization. Li et al. [7–10,1] have extensively
applied evolutionary structural optimization to thermo-
elastic and heat transfer topology design problems, and
they apply evolutionary structural optimization to general
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Nomenclature

a area
A cross-sectional area
cp specific heat
di ith design variable
di, �di lower and upper bounds
d design variable field
g side convection function
h convection coefficient
�h nominal convection coefficient
k thermal conductivity
K thermal conductance matrix
KT tangent matrix
L length
n outward normal
nc number of optimization constraints
nd number of design variables
N shape function matrix
p penalty parameter
P perimeter
P thermal load vector
q heat flux vector
qn surface heat flux
q* prescribed surface heat flux
q�b prescribed surface heat flux at the base
Q heat generation rate per unit volume
R residual
s heat source
sij distance from centroid of element j to element i

T excess temperature field
T �b prescribed excess temperature at the base
v volume

�v upper volume bound
v fluid velocity vector
x, x material point location in one- and multi-dimen-

sions

Greek symbols

a penalty parameter
�R, �H convergence tolerances
g1, ĝ1 first density measure value and function
g1 first density measure field
g2, ĝ2 second density measure value and function
g2 second density measure field
C surface
Cq, Ch complementary subsurfaces
xi sum of filter kernel weights
xjðsijÞ filter kernel
X interior
/, /̂ filtered density design variable and function
/ filtered density design variable field
q fluid density
h temperature field
h* prescribed temperature field
H nodal temperature field
DH temperature update
H0, Hi optimization objective and constraints

Superscripts

h convective (and radiative) contribution
k conductive contribution
q imposed surface heat flux contribution
Q concentrated heat source contribution
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physical field problems [11]. Kikuchi and coworkers early
examined piezoelectric material and mechanism topology
design, e.g. in [12,13] and implemented transient heat con-
duction for topology design [14]. In a manner similar to the
methods developed for structural topology optimization,
topology optimization has been applied to electromagnetic
design problems, e.g. in [15–17]. Sigmund and coworkers
first investigated the thermal effects on material layout
design [18–20] and first introduced heat transfer and electri-
conductive
material

volumetric
heat generationheat sink

adiabatic boundary

Design Domain

Qk

a b

Fig. 1. (a) Design domain of an adiabatic enclosure with volumetric heat
generation and heat sink. (b) Optimal distribution of highly conductive
material.
cal conduction into the inherently multiphysical topology
design problem for microelectromechanical (MEM) sys-
tems [21–23]. Yin and Ananthasuresh [24] and Yoon and
Kim [25] have subsequently investigated similar MEM
design problems. Maute and coworkers [26,27] investigate
electrostatically actuated MEM systems. Bruns and Sig-
mund [28] investigated the topology design of mechanisms
that exhibit snap-through due to thermally-induced strain.
More recently, Ha et al. [29] and Moon et al. [30] investi-
gate nonlinear heat conduction and heat transfer with con-
vection topology design problems, respectively, along the
lines investigated here.

Here, we investigate convection-dominated heat transfer
topology design problems and the numerical instabilities
that develop due to low density elements in the finite ele-
ment analysis (FEA) of the topology optimization. We
illustrate the potential problems by examining the FEA
of the cooling fin embedded in the fixed 8� 8 mm2 mesh
discretized by 64 4-noded quadrilateral elements and
depicted in Fig. 2. The black elements of the cooling fin
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Fig. 2. Cooling fin embedded in fixed domain.
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has high thermal conductivity k1 and the cooling fin is
embedded in a fluid denoted by white elements with rela-
tively low thermal conductivity k2 � k1. We apply a uni-
form heat flux along the left edges of the two leftmost
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Fig. 3. Temperature contour plots of cooling fin by FEA using (a) consistent
profile plots at (0) x = 0, (1) 1, (2) 2, (3) 3, (4) 4, (5) 5, (6) 6, (7) 7, and (8) 8
elements of the cooling fin and also apply convection with
coefficient h and ambient fluid temperature h� ¼ 0 �C uni-
formly over the planar surface of the entire domain.
Fig. 3a shows the temperature contour plot of the cooling
fin examined by FEA using the usual consistent discretiza-
tion of the governing nonlinear heat transfer equations
with convection. Note that the temperature denoted in
the black regions falls below the ambient fluid temperature
h*. The nonphysical oscillations are apparent in the tem-
perature profiles plotted at discrete intervals along the
cooling fin length of Fig. 3b. These oscillations are due to
the introduction of convection into the heat transfer prob-
lem and large orders of magnitude difference between the
thermal conductivities in the FEA. Such ‘‘wiggles” are an
emphatic sign that the finite element methodology cannot
correctly capture the underlying physics [31]. Note that
such conditions will invariably occur in the topology opti-
mization of heat transfer problems with convection because
of the density-design-variable-weighted thermal conductiv-
ities. Moreover, we cannot accept the poor performance of
the FEA because this spurious behavior can adversely
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and (b) lumped convection matrices. Corresponding temperature response
mm for (c) consistent and (d) lumped convection matrices.
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affect the topology optimization iterative design space
search. Yoon and Kim [25] highlight this problem for
multiphysics problems, and they conclude that there is no
density-based interpolation scheme that can resolve the
numerical instabilities, and therefore they justify a new
topology optimization approach, the element connectivity
parameterization (ECP) method, that circumvents the
problem. We also encountered the oscillatory behavior in
the topology optimization of MEM devices [32]. However,
we resolve the numerical instability problem directly as
Fig. 3b and d suggest.

In Section 2, we develop the governing heat transfer
equations. Topology optimization is briefly defined in Sec-
tion 3. Then, we closely examine why the oscillatory behav-
ior develops in the heat transfer analysis by comparing
analytical and finite element analyses, and we propose a
remedy in Section 4. In Section 5, we illustrate our
approach by generating several topology designs by
example.

2. Heat transfer analysis

The arbitrary body of Fig. 4 distinguished by its interior
X and surface C is subjected to heat transfer. The global
steady-state heat transfer equilibrium equation that bal-
ances the net surface heat flux qn over C denoted by out-
ward orientation normal n exiting the system with the net
heat source s added to X is expressed for each material
point x as

�
Z

C
qnðxÞdaþ

Z
X

sðxÞdv ¼ 0 ð1Þ

and solved for the temperature distribution hðxÞ. We differ-
entiate between complementary subsurfaces where the tem-
perature field is prescribed, i.e. on Ch, and the surface heat
flux is applied or adiabatic conditions assumed, i.e. on Cq,
such that Ch [ Cq � C and Ch \ Cq ¼ 0. From Cauchy’s
theorem, the heat flux vector q is defined through

qnðxÞ � qðxÞ � nðxÞ ð2Þ

and, using the divergence theorem, leads to the local energy
balance for x 2 X expressed as

�divqðxÞ þ sðxÞ ¼ 0: ð3Þ
Γq
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Fig. 4. Body subjected to heat transfer.
We assume that the constitutive material obeys Fourier’s
law, i.e.

qðxÞ ¼ �kðhðxÞ; xÞrhðxÞ ð4Þ

where the isotropic thermal conductivity k is potentially
temperature dependent. In addition to prescribed tempera-
ture field h* on x 2 Ch

hðxÞ ¼ h�ðxÞ; ð5Þ

surface heat flux or convective boundary conditions are
prescribed for x 2 Cq by

qnðxÞ ¼ q�ðxÞ or ð6Þ
qnðxÞ ¼ hðhðxÞ; h�ðxÞ; xÞðhðxÞ � h�ðxÞÞ; ð7Þ

respectively, note that radiation boundary conditions can
be readily recast mathematically in the form of a nonlinear
convective boundary condition.

Upon discretization of the domain by a finite element
mesh, the governing equations to solve for the nodal tem-
perature field H are expressed algebraically in residual R

form as

RðHÞ ¼ �KðHÞHþ PðHÞ ð8Þ
where the thermal conductance matrix K and thermal load
vector P are further decomposed by

K ¼ Kk þ Kh and ð9Þ
P ¼ PQ þ Pq þ Ph ð10Þ

where superscripts k, h, Q, and q denote conductive, con-
vective (and radiative), concentrated heat source, and
imposed surface heat flux contributions, respectively, Refer
to references such as [33] for a more thorough numerical
treatment of these terms. Since K and P are generally non-
linear with respect to H, we use the Newton–Raphson
method to iteratively compute the temperature update
DH at iteration i by

KTðHiÞDH ¼ R ð11Þ
Hiþ1 ¼ Hi þ DH ð12Þ

with tangent matrix KT � � oR
oH until convergence is satis-

fied, e.g. by

kRik 6 �R and kDHk 6 �H ð13Þ
for �R � 1 and �H � 1.

3. Topology optimization

The topology optimization problem is stated as

minimize H0ðdÞ ð14Þ
subject to HiðdÞ 6 0 ð15Þ

dj 6 dj 6 dj ð16Þ

where H0 is the objective function, Hiðfor i ¼ 1; ncÞ are the
inequality constraints and djðfor j ¼ 1; ndÞ are the design
variables that are bounded above and below by dj and dj.
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Although the density design variables can be assigned to
nodes, and then the field is appropriately interpolated, a
density design variable di is assigned to every element i here
that ranges between its small lower bound di � 0, e.g.
di ¼ 10�6, and upper bound di ¼ 1. The notion of topology
is introduced into the analysis through a set of first density
measures g1 which indicates the presence or absence of the
influence of a physical property, e.g. by

Kk
i ¼ ĝk

1iðdÞbKk
i ð17Þ

for conduction heat transfer and

Kh
i ¼ ĝh

1iðdÞbKh
i ð18Þ

Ph
i ¼ ĝh

1iðdÞbPh
i ð19Þ

for convection (and radiation) heat transfer where the bK
and bP right-hand-side terms correspond to the full pres-
ence of the physical property and the K and P left-hand-
side terms are used in the computational analysis. Note
that the first density measure g1i is computed for every fi-
nite element i and is defined as a function of the density de-
sign variable field d, i.e. g1i ¼ ĝ1iðdÞ. In a manner consistent
with the density design variable range, the density measure
g1 ranges from a small value to one representing the ab-
sence or presence of the property, respectively. Since we
are interested in the topology of the material in X, the var-
iation in the first density measure field gk

1 is used to depict
the topology of the body subjected to heat transfer.

There are a variety of ways to introduce the notion of
topology into the FEA of the topology optimization prob-
lem. The most common approach is by the SIMP method
[34,35], but we apply the SINH (‘‘cinch”) method here
which is more fully described in [36]. Briefly, the method
penalizes less volumetrically effective intermediate density
material, and compared to previous filter techniques, the
‘‘regularization” is moved from the primal analysis,
through g1, to the resource constraint, through g2. We
define both the SIMP and SINH methods independent of
the particular interpolation function chosen, e.g. power
law, hyperbolic sine, etc. Here, the linear first gk

1 and power
law second g2 density measures for every element i are
defined by

gk
1i ¼ ĝk

1iðdÞ ¼ di and ð20Þ
g2i ¼ ĝ2iðdÞ ¼ 1� ð1� /iÞ

p ð21Þ

where the filtered density design variable field / is com-
puted for every element i as

/i ¼ /̂iðdÞ ¼
X

j

xjðsijÞ
xi

dj ð22Þ

with

xi ¼
X

j

xjðsijÞ ð23Þ

and the Gaussian-weighted kernel xj computed by
xjðsijÞ ¼
exp �

s2
ij

2 r
3ð Þ

2

 !
2p r

3ð Þ
for sij 6 r

0 for sij > r

8>>><>>>: ð24Þ

is based on the distance sij, e.g.

sij ¼ ððxj � xiÞ2 þ ðyj � yiÞ
2Þ

1
2; ð25Þ

of the surrounding element j centroids ðxj; yjÞ within a fixed
mesh-independent radius r of the element i centroid ðxi; yiÞ.
The appropriate definition of the first density measure gh

1

due to the convection terms is the subject of the next sec-
tion. We define the effective volume v, corresponding to
the design domain X, as

vðdÞ ¼
Z

X
ĝ2ðdÞdv; ð26Þ

and we constrain v by its upper bound �v defined as a frac-
tion of the maximal volume

R
X dv, i.e.

H1ðdÞ ¼ vðdÞ � �v: ð27Þ

As the penalty parameter p P 1 is increased, the volume is
progressively penalized, and therefore, the intermediate
density material is volumetrically less effective. Since inter-
mediate density material consumes more volume with
respect to its load carrying capability than solid or void
material, the topology optimization algorithm will redis-
tribute, i.e. within the constraints of the mesh discretiza-
tion, the intermediate density material of given volume
more effectively.

Analytical sensitivities, i.e. dH0

dd
ðdÞ and dHi

dd
ðdÞ, are calcu-

lated efficiently here by the adjoint method [37], and the
Method of Moving Asymptotes (MMA) [38] is used to
solve the large-scale optimization problem.
4. Numerical instabilities

We investigate numerical instabilities that can develop
in convection-dominated diffusion problems due to the
density dependent interpolation schemes of topology opti-
mization. We emphasize here that we investigate the
temperature response due to changes in the material prop-
erties, e.g. thermal conductivity k, which is tantamount to
varying the design variables d of the density measures g1

that weight the corresponding material properties, e.g.
the d of ĝk

1iðdÞ in Eq. (17).
Consider the one-dimensional heat conduction problem

of the fins depicted in Fig. 5 subject to conduction, convec-
tion, and possible heat generation. We arbitrarily decom-
pose the fins into two domains to investigate the
convergent behavior of the temperature response as the
physical properties of the second domain X2 vanish.

To determine the temperature hðxÞ distribution in the x-
direction, the governing equation for one-dimensional
steady-state heat conduction subject to appropriate bound-
ary conditions is expressed as
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Fig. 5. Fins composed of domains X1 and X2 subjected to one-dimensional heat transfer (a) with prescribed base heat flux (problem P1) and (b) with heat
generation and prescribed base temperature (problem P2).

Fig. 6. (P1) Analytical excess temperature response T ðxÞ for (a) X2 present
and (b) absent/vanishing X2.
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d

dx
kðhðxÞ; xÞAðxÞ dhðxÞ

dx

� �
� hðhðxÞ; xÞP ðxÞðhðxÞ � h�Þ

þ QðhðxÞ; xÞAðxÞ ¼ 0 ð28Þ

where k is the thermal conductivity, A is the cross-sectional
area, h is the convection heat transfer coefficient, P is the
perimeter, h* is the ambient fluid temperature far removed
from the body, and Q is the heat generation rate per unit
volume. The excess temperature field T ðxÞ is defined by

T ðxÞ � hðxÞ � h�: ð29Þ

Assuming k, h, and Q are independent of temperature and
k, h, Q, A, and P are constant over the region of interest,
then

d2T
dx2
� m2T ¼ �Q

k
ð30Þ

is subject to appropriate boundary conditions and

m2 � hP
kA
: ð31Þ

Without loss of generality, we assume that the fin is of
uniform, unit cross-sectional area and perimeter.

In X1 for 0 6 x 6 L1 of the fins, the corresponding excess
temperature field T1 is found by

d2T 1

dx2
� m2

1T 1 ¼ �
Q1

k1

ð32Þ

for m2
1 ¼ h1

k1
. For the fin of problem P1 in Fig. 5a, Eq. (32) is

subject to the prescribed surface heat flux at the base q�b
where

qx
1ð0Þ ¼ �k1

dT 1

dx

����
x¼0

¼ q�b; ð33Þ

and no heat generation, i.e. Q1 ¼ 0. For the fin of problem
P2 in Fig. 5b, Eq. (32) is subject to

T 1ð0Þ ¼ T �b ¼ h�b � h� ð34Þ

where the excess temperature T 1ð0Þ at the base, i.e. x = 0, is
prescribed as T �b. In X2 for L1 6 x 6 L2,

d2T 2

dx2
� m2

2T 2 ¼ �
Q2

k2

ð35Þ

for m2
2 ¼ h2

k2
subject to
h2eT 2ðL2Þ ¼ �k2

dT 2

dx

����
x¼L2

ð36Þ

where h2e is the convection coefficient at x ¼ L2, and Q2 ¼ 0
for the fin of Fig. 5a. For continuity, we enforce

T 1ðL1Þ ¼ T 2ðL1Þ ð37Þ

across the X1–X2 interface. In addition, to evaluate the
behavior as X2 vanishes, we define convection at the inter-
face by

h12T 1ðL1Þ ¼ �k1
dT 1

dx

����
x¼L1

þ k2
dT 2

dx

����
x¼L1

ð38Þ

where h12 is the convection coefficient at the interface
x ¼ L1. Note that when h12 ! 0, k1

dT 1

dx jx¼L1
¼ k2

dT 2

dx jx¼L1

for continuity, and when k2 ! 0, then h12T 1ðL1Þ ¼
�k1

dT 1

dx jx¼L1
.

Next, we analytically evaluate the temperature response
of the fins as the physical properties of the second domain
X2 vanish. For illustrative purposes, we assign values of
one to parameters that exist and small values, e.g. 10�6,
to parameters that vanish. For X1, we set L1 ¼ 1 m,
k1 ¼ 1 W

m 	C, h1 ¼ 1 W
m2 	C, and Q1 ¼ 0 W, and for X2, we

set L2 � L1 ¼ 1 m and Q2 ¼ 0 W. For P1, we prescribe the
heat flux q�b ¼ 1 W

m2 at the base and the ambient fluid tem-
perature h� ¼ 0 �C. When X2 exists, we set k2 ¼ 1 W

m 	C,
h2 ¼ h1 ¼ 1 W

m2 	C, h12 ¼ 0 W
m2 	C, and h2e ¼ 1 W

m2 	C. The cor-
responding baseline temperature response is depicted in
Fig. 6a.

We expect that the temperature should approach the
ambient fluid temperature h� ¼ 0 �C in X2 as X2 vanishes
because there is no constituent material to conduct the



Fig. 7. (P1) Convergent behavior of the excess temperature T ðxÞ for (a)
h2 ¼ 10�9, (b) 10�6, (c) 10�5, (d) 10�4, and (e) 1 W

m2 	C.
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heat. For vanishing X2, we set k2 ¼ 10�6 W
m 	C, h12 ¼ 1 W

m2 	C,
and h2e ¼ 0 W

m2 	C, and we vary the convection coefficient h2

to study the asymptotic behavior of the temperature
response. Fig. 7 indicates that the value of h2 should be
independent of the presence or absence of X2. Conse-
quently, the correct temperature response with h2 ¼ h1 ¼
1 W

m2 	C is depicted in Fig. 6b (and Fig. 7e).
Next, we examine the temperature response computed

by conventional FEA. The volumetric conductive and con-
vective contributions to K and P are

Kk ¼
Z

X
rTNkrNdv; Kh ¼

Z
X

NThNdv; and

Ph ¼
Z

X
NThh� dv ð39Þ

for an isotropic material with conductivity coefficient k,
where we assume that h is constant over each domain of
influence and N is the shape function matrix consistent
with the particular finite element discretization. For one-
dimensional, two-noded elements with uniform, unit
cross-sectional area, perimeter, and length, i.e. A ¼ P ¼
L ¼ 1, the above terms are evaluated as
Fig. 8. (P1) Finite element excess temperature response T ðxÞ for vanishing X2

and (c) 20 3-noded (p-refinement) elements.
Kk ¼ k
1 �1

�1 1

� �
; Kh ¼ h

6

2 1

1 2

� �
; and Ph ¼ hh�

2

1

1

� �
ð40Þ

in a consistent manner.
We evaluate the temperature response of problem P1 for

vanishing X2. Fig. 8 shows the FEA response to P1 when
k2 ¼ 10�6 W

m 	C, h12 ¼ 1 W
m2 	C, and h2e ¼ 0 W

m2 	C, and h2 ¼
h1 ¼ 1 W

m2 	C. Note that there are oscillations in the temper-
ature response which indicate that the finite element
discretization does not accurately capture the physics of
the problem. Although h- and p-refinement can reduce
the magnitude of the oscillations, neither can resolve the
numerical instability. From a practical point of view, if
the analyst is merely interested in the heat transfer analysis,
they might be satisfied with the temperature response in X1

and accept that the temperature response in X2 does not
reflect the physics of the problem. However, since we are
interested in design by topology optimization, we cannot
model the physics incorrectly and expect that the optimiza-
tion algorithm in general will ignore the poor modeling,
and in many cases the optimizer will take advantage of
the incorrect modeling.

Numerical oscillations are a well known phenomena in
the computational response of convection-dominated fluid
mechanics problems where adding artificial viscosity reme-
dies the oscillations. Analogous to adding artificial viscos-
ity, we could add artificial conductive material when
oscillations appear in the analysis. However, it is not read-
ily apparent how and when the artificial conductivity
should be added so that the temperature response remains
consistent and continuous between design changes of the
optimization. Or, an arbitrary ‘‘sufficiently high” lower
bound on the conductivity coefficient k, i.e. in a manner
analogous with structural reinforcement problems, can be
defined to make sure that low density elements have suffi-
cient conductivity to hopefully prevent the oscillations.
with one-dimensional, (a) 20 two-noded, (b) 40 two-noded (h-refinement),



Fig. 9. (P1) Finite element excess temperature response T ðxÞ for vanishing
X2 with one-dimensional, (a) 20 two-noded and (b) 40 two-noded (h-
refinement) elements.

Fig. 10. (P2) Analytical excess temperature response T ðxÞ for absent/
vanishing X2.
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Alternatively, because the temperature response should be
bounded from below by h*, the author has numerically
fixed any nodal temperature h < h� to h ¼ h� iteratively
until all nodal temperatures satisfy h P h� (in a similar
manner as the methodology to remove rigid body modes
described in [39,40]) with some success. Since the oscilla-
tions arise because the continuous finite element interpola-
tion cannot capture the discontinuous temperature
response over a finite element, cf. Fig. 6b and Fig. 8 at
the X1–X2 interface, discontinuous Galerkin (DG) methods
are a more appropriate numerical method for this problem,
but the computational overhead of these methods seems
problematic for large-scale topology optimization.

Key insights into resolving the numerical instabilities are
that (1) the oscillations are due to convection-dominated
diffusion and that (2) the convection boundary conditions
are numerically enforced in a manner analogous to a pen-
alty method. For the first insight, since the conduction
terms are density dependent while the volumetric convec-
tion terms are fixed, the analysis becomes dominated by
the convection terms in those elements with low density.
Moreover, although the positive contributions of the off-
diagonal terms of the consistent convection matrix, e.g.
in Eq. (39), do not pose an inherent numerical problem,
the magnitude of their presence in relation to the magni-
tude of the diagonal terms gives rise to the numerical oscil-
lations. For the second insight, rather than reordering the
governing equations, we recognize that a common
approach to applying boundary conditions is to enforce
the boundary conditions by adding an equation of the form

ah ¼ ah� ð41Þ

where a ‘‘sufficiently large” penalty parameter a enforces
the desired boundary condition h ¼ h�. The role of the
physical convection coefficient h in Eq. (7) mimics the effect
of enforcing the boundary condition numerically by pen-
alty parameter a in Eq. (41). Therefore, we should not be
surprised that the brute enforcement of boundary condi-
tions on the interior of the domain while maintaining the
FEA continuity conditions can cause potential numerical
problems. We can enforce the boundary conditions
strongly at the finite element nodes, but we can only en-
force the boundary conditions in a weighted-average sense
in the interior of any finite element.

As an aside, the second insight leads naturally to the
alternative topology optimization by penalty (TOP)
method [41]. In this formulation, existing topology optimi-
zation formulations are reinterpreted, e.g. for fluid
mechanics, and alternatively formulated, e.g. in the design
of supports, and the methodology opens the possibility of
solving new problems, e.g. for mechanism design.

Based on our insights, we resolve the numerical instabil-
ities by ensuring that the convection term contributions are
so-called lumped matrices. This can be accomplished read-
ily in two ways. Firstly, we can evaluate the convection
matrices directly in lumped form, e.g. by
Kh ¼ h
2

1 0

0 1

� �
ð42Þ

for the one-dimensional heat transfer problem P1. The
topic of matrix diagonalization or lumping for FEA is
expounded upon in appendix 8 of Ref. [42]. Secondly, we
can ensure that the convection matrix becomes diagonal
as the domain of interest vanishes, i.e. by modifying the
consistent convection matrix of P1 to

Kh ¼
�h
6

2 d

d 2

� �
ð43Þ

where the nominal �h is fixed and variable d 6 d 6 1 indi-
cates the relative absence, e.g. d ¼ d ¼ 10�6, or presence,
i.e. d = 1, of the domain. Note that we want the off-diago-
nal terms of Eq. (43) to equal zero when d = 0 and equal
one when d = 1. We have chosen a linear interpolation
here, but for intermediate d values, it may be preferable
in terms of numerical stability that the off-diagonal terms
be interpolated between zero and one by a nonlinear inter-
polation scheme, e.g. by dp for penalty parameter p > 1, in
the topology optimization.

We return to the FEA solution of problem P1 with
lumped matrix in the form of Eq. (42) and set k2 ¼
10�6 W

m 	C, h12 ¼ 1 W
m2 	C, and h2e ¼ 0 W

m2 	C, and h2 ¼ h1 ¼
1 W

m2 	C, and Fig. 9 shows the FEA response. Note that
there are no oscillations in the temperature response and
that the FEA solution approaches the analytical solution



Fig. 11. (P2) Finite element excess temperature response T ðxÞ for vanishing X2 with one-dimensional, 20 two-noded elements and (a) consistent or
(b) lumped convection matrices.
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of Fig. 6b with refinement, e.g. by h-refinement as shown in
Fig. 9b.

Next, we briefly investigate the temperature response of
problem P2 of Fig. 5b as domain X2 vanishes. For X1, we
set L1 ¼ 1 m, k1 ¼ 1 W

m 	C, h1 ¼ 1 W
m2 	C, and Q1 ¼ 1 W, and

for vanishing X2, we set L2 � L1 ¼ 1 m, k2 ¼ 10�6 W
m 	C,

h2 ¼ 1 W
m2 	C, h12 ¼ 1 W

m2 	C, h2e ¼ 0 W
m2 	C, and Q2 ¼ 10�6 W.

For P2, we prescribe the base temperature h�b ¼ 0 	C and
the ambient fluid temperature h� ¼ 0 �C again. The corre-
sponding temperature response is depicted in Fig. 10. Note
again that h12 is sufficiently large to drive the temperature
response to the ambient fluid temperature h* at the X1–
X2 interface. As Fig. 11a demonstrates, nonphysical oscilla-
tions appear in FEA solution using consistent convection
matrix of Eq. (40), so the lumped convection matrix of
Eq. (42) is used instead, and the corresponding FEA solu-
tion is shown in Fig. 11b. Note that the oscillations are
suppressed when a lumped convection matrix is
implemented.

Fig. 12 shows the effect of varying Q2 on the tempera-
ture response which indicates that we desire Q2 ! 0 as X2

vanishes. Therefore, as a cautionary note, in cases where
Q2 is held constant, e.g. when the design domain rests on
top of a conductive substrate, a lower bound on k2 should
be ‘‘sufficiently large” to ensure that the temperature
response remains realistic. Furthermore, conditions under
which the domain interior experiences excessive heat flux
due to regions of low density elements, particularly at inter-
Fig. 12. (P2) Effect of varying (a) Q2 ¼ 10�6, (b) 10�2, (c) 10�1, and (d)
1 W on the excess temperature response T ðxÞ.
mediate optimization iterations, can lead to divergence of
the nonlinear FEA solution by the Newton–Raphson
method. Although we do not experience divergence prob-
lems in the examples presented below, they can be readily
resolved by the techniques employed for the gross mesh
distortion of regions of low density elements in structural
topology optimization problems, e.g. see the discussion in
[39].

Until now, we have not discussed how to implement side
convection, i.e. h12 and h2e type terms, into the FEA for
topology optimization. This is a nontrivial issue because
the optimization progress will be heavily influenced by
the particular density-based side convection formulation.
For the present problems, we do not incorporate side con-
vection, which will also cause numerical instabilities that
can be resolved by the methodology described here, so that
we can more directly examine the source of the oscillatory
behavior. However, we advocate the following approach
for planar problems which is described more thoroughly
in [32]. In summary, the side convection terms are weighted
by a density-difference-based interpolation scheme, and
half of the total contribution is associated which each of
the two elements connected along the same edge so that
the total convection contribution is easily applied on sum-
ming over each element in the usual finite element proce-
dure. For example, for elements i and j connected by a
common interface, i.e. edge, with corresponding densities
di and dj, the nominal side convection coefficient �h can be
interpolated by:

hi¼
1

2
gðdi�djÞ�h and hj¼

1

2
gðdj�diÞ�h where e:g: gðqÞ� jqj

ð44Þ

where hi and hj are the side convection coefficients used in
the element computations. In density-design-variable-
based topology optimization, the solid–void interface is
diffuse at intermediate optimization iterations, and there-
fore, tracking it is problematic from an implementation
point of view. By distributing half the contribution to both
sides of the interface and accounting for sign changes via
function g due to the density differences and the opposing
directions of the outward-facing normals, we do not need
to track where the interface is nor apply terms on only
one side of the interface. This approach can be adapted
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for boundary conditions in the domain interior of other
mechanics problems, e.g. electrostatics and pressure loads.

Before concluding, we note that we did not explicitly
account for fluid motion in the discussion of Section 2.
To do so, we add the convective term to the right-hand-side
of Eq. (3) as

�divqðxÞ þ sðxÞ ¼ qcpvðxÞ � rhðxÞ ð45Þ

where q is the fluid density, cp is the specific heat at con-
stant pressure p, and v is the fluid velocity vector. It should
be noted that extensive research in the past half century
has been devoted to resolving the nonphysical oscillatory
behavior in convection-dominated heat and fluid flow that
appears in the FEA solution. For example, refer to chapter
12 of [43] and the references contained therein for an intro-
duction. The jumps in material properties that physically
occur in stationary and moving interface problems such
as for solidification simulation are analogous to the jumps
in material properties that occur topology optimization.
Stabilized solution strategies have been studied extensively
for these problems, e.g. see [44,45]. Our purpose here is to
merely point out that the stability issue will be encountered
as topology optimization is expanded to design problems
with more complex mechanics. In [46], we more thor-
oughly examine the oscillatory behavior and its ramifica-
tions on the topology optimization for fluid mechanics
problems.
,h
k

Design Domain

*
b

q

θ*

Fig. 13. (P3) Design domain for micro-cooling fins.

Fig. 14. (P3) Topology optimization history plots of first density measures g1 a
using consistent convection matrices.
5. Examples

In problem P3, we design micro-cooling fins for the
design domain depicted in Fig. 13. The 40 � 20 lm2

domain with uniform 1 lm thickness is discretized by
3200 uniform 4-node quadrilateral element mesh. A heat
flux q�b ¼ 1 pW

lm2 is prescribed at the mid-span of the lower
edge. The conductivity of the constituent material is
k ¼ 1 pW

lm 	C. We assume that convection occurs predomi-
nantly from the top surface only with convection coefficient
h ¼ 10�3 pW

lm2 	C and ambient fluid temperature h� ¼ 0 �C.
The design objective is to optimally distribute material so
that the temperature at the applied heat flux is minimized,
i.e. minimize H0 ¼ hb, subject to a material resource con-
straint, i.e. the upper bound on the total volume v is set
to 30% of the maximal volume. The density design vari-
ables are initially set to dj ¼ 0:2, and their lower and upper
bounds are set to dj ¼ 10�9 and �dj ¼ 1, respectively. For
the SINH method, the filter length r is set to 1 lm, and
the penalty parameter p is fixed at p = 3.

Fig. 14 depicts the optimization history of the topology
design using consistent convection matrices. The optimized
temperature is hb ¼ 3:37 �C at iteration 680, and the tem-
perature ranges from 0.19 to 3.37 �C in the design domain
as shown in Fig. 15h. Fig. 15b–g indicate that the temper-
ature drops below h* in the black regions due to unphysical
oscillations in the temperature response. It is fortuitous
that the optimization algorithm does not appear to take
advantage of the numerical oscillations in this problem,
but in general, we cannot guarantee that the optimization
history will not be unduly affected.

To resolve the numerical instabilities, we generate opti-
mized topologies using explicitly lumped convection matri-
ces, i.e. analogous to Eq. (42), and density-based lumped
convection matrices, i.e. analogous to Eq. (43). Figs. 16
and 18 depict the respective optimization history of the
topology design using lumped convection matrices. The
optimized temperatures are hb ¼ 3:37 �C at iteration 528
and hb ¼ 3:41 �C at iteration 767 respectively, and the tem-
perature ranges from 9:8� 10�2 � 3:37 �C to 5:5� 10�13

�3:41 �C in the design domains as shown in Figs. 17 and
t iteration (a) 0, (b) 24, (c) 72, (d) 120, (e) 192, (f) 264, (g) 336, and (h) 680



Fig. 15. (P3) Topology optimization history plots of temperature response at iteration (a) 0, (b) 3, (c) 6, (d) 9, (e) 15, (f) 36, (g) 63, and (h) 680 using
consistent convection matrices.

Fig. 16. (P3) Topology optimization history plots of first density measures g1 at iteration (a) 0, (b) 24, (c) 48, (d) 72, (e) 96, (f) 192, (g) 384, and (h) 528
using explicitly lumped convection matrices.

Fig. 17. (P3) Topology optimization plot of temperature response at
iteration 528 using explicitly lumped convection matrices.
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19 respectively. No oscillation appears in the temperature
response at any intermediate optimization iteration using
Fig. 18. (P3) Topology optimization history plots of first density measures g1 a
using density-based lumped convection matrices.
the lumped convection matrices. Note also that the den-
sity-based lumped convection matrix formulation enforces
the ambient fluid temperature more aggressively than the
other formulations. Furthermore, we generate different
optimized topologies on comparison of Figs. 14h, 16h,
and 18h. This can be attributed to the different numerical
schemes to model the physical convection and to the
numerous local minima in the design space that is searched
by a gradient-based nonlinear programming algorithm.

In problem P4, we design another micro-cooling fin for
the design domain depicted in Fig. 20. The 40 � 20 lm2
t iteration (a) 0, (b) 96, (c) 124, (d) 148, (e) 172, (f) 224, (g) 336, and (h) 767



Fig. 19. (P3) Topology optimization plot of temperature response at
iteration 767 using density-based lumped convection matrices.

,h
k

Design Domain

aθ**
b

q

Fig. 20. (P4) Design domain for micro-cooling fin.
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domain with uniform 1 lm thickness is discretized by 3200
uniform 4-node quadrilateral element mesh. A heat flux
q�b ¼ 1 pW

lm2 is prescribed along the left domain edge. The
conductivity of the nonlinear constituent material is
k ¼ 1þ 0:1h pW

lm 	C. We assume that convection occurs pre-
dominantly from the top surface only with convection coef-
ficient h ¼ 10�1 pW

lm2 	C and ambient fluid temperature
h� ¼ 0 �C. The design objective is to optimally distribute
Fig. 21. (P4) Topology optimization history plots of first density measures g1 a
consistent convection matrices.

Fig. 22. (P4) Topology optimization history plots of temperature response at i
consistent convection matrices.
material so that the temperature at tip point ‘a’ (39 mm,
10 mm) is maximized, i.e. minimize H0 ¼ �ha, subject to
a material resource constraint, i.e. the upper bound on
the total volume �v is set to 30% of the maximal volume.
The density at the left edge and about point ‘a’ are fixed
as solid, i.e. dj ¼ 1, and the rest of the density design vari-
ables are initially set to dj ¼ 0:2, and their lower and upper
bounds are set to dj ¼ 10�9 and dj ¼ 1, respectively. For
the SINH method, the filter length r is set to 1 lm, and
the penalty parameter p is fixed at p = 3.

Fig. 21 depicts the optimization history of the topology
design using consistent convection matrices. The optimized
temperature is ha ¼ 5:27� 10�5 �C at iteration 152, and the
temperature ranges from �3.81 to 10.44 �C in the design
domain as shown in Fig. 22h. Fig. 22b–g indicates that
the temperature drops below h* in the black regions due
to unphysical oscillations in the temperature response.

To resolve the numerical instabilities, we generate
optimized topologies using explicitly lumped convection
matrices, i.e. analogous to Eq. (42). Fig. 23 depicts the opti-
mization history of the topology design. The optimized
temperature is ha ¼ 4:01� 10�5 �C at iteration 159, and
the temperature ranges from 0 to 9.85 �C in the design
domains as shown in Fig. 24.

Finally in problem P5, we solve problem P4 again with
higher nonlinear conductivity k ¼ 100þ 10h pW

lm 	C. Fig. 25
t iteration (a) 0, (b) 5, (c) 10, (d) 20, (e) 30, (f) 50, (g) 100, and (h) 152 using

teration (a) 0, (b) 5, (c) 10, (d) 20, (e) 30, (f) 50, (g) 100, and (h) 152 using



Fig. 23. (P4) Topology optimization history plots of first density measures g1 at iteration (a) 0, (b) 5, (c) 10, (d) 20, (e) 30, (f) 50, (g) 100, and (h) 159 using
explicitly lumped convection matrices.

Fig. 24. (P4) Topology optimization plot of temperature response at
iteration 159 using explicitly lumped convection matrices.

Fig. 25. (P5) Topology optimization history plots of first density measures g1 a
consistent convection matrices.

Fig. 26. (P5) Topology optimization history plots of temperature response at i
consistent convection matrices.
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depicts the optimization history of the topology design
using consistent convection matrices. The optimized tem-
perature is ha ¼ 0:66 �C at iteration 143, and the tempera-
ture ranges from �0.86 to 1.29 �C in the design domain as
shown in Fig. 26h. Fig. 26b–g indicate that the temperature
drops below h* in the black regions due to unphysical oscil-
lations in the temperature response.

Fig. 27 depicts the optimization history of the topology
design using explicitly lumped convection matrices, i.e.
t iteration (a) 0, (b) 15, (c) 30, (d) 40, (e) 50, (f) 60, (g) 80, and (h) 143 using

teration (a) 0, (b) 15, (c) 30, (d) 40, (e) 50, (f) 60, (g) 80, and (h) 143 using



Fig. 27. (P5) Topology optimization history plots of first density measures g1 at iteration (a) 0, (b) 15, (c) 30, (d) 40, (e) 50, (f) 60, (g) 80, and (h) 108 using
explicitly lumped convection matrices.

Fig. 28. (P5) Topology optimization history plots of temperature response at iteration (a) 0, (b) 15, (c) 30, (d) 40, (e) 50, (f) 60, (g) 80, and (h) 108 using
explicitly lumped convection matrices.

2872 T.E. Bruns / International Journal of Heat and Mass Transfer 50 (2007) 2859–2873
analogous to Eq. (42). The optimized temperature is
ha ¼ 0:62 �C at iteration 108, and the temperature ranges
from 0 to 1.26 �C in the design domains as shown in
Fig. 28. Note that the oscillations that develop in the region
of low density elements at the base of the fin, e.g. in
Fig. 26e, lead to a different design at the base.

6. Conclusion

We have demonstrated that numerical problems in the
FEA can develop when convection is applied in a consis-
tent manner. Most notably, nonphysical oscillations in
the regions of low density, and consequently low conduc-
tivity, elements in the FEA solution indicate that numerical
problems exist. Consequently, the poor modeling of con-
vection can adversely influence the design space search of
the optimization algorithm, e.g. particularly for multiphys-
ics design problems where other physics are coupled to the
thermal analysis. To resolve this issue, we implement
lumped convection, and the examples demonstrate that
the spurious oscillations are removed from the FEA.
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